Skip to content
Our company is 100% woman-owned, adding a unique perspective to our commitment to excellence!
Our company is 100% woman-owned, adding a unique perspective to our commitment to excellence!

Geothermal Energy Systems

Sold out
Original price $152.95 - Original price $152.95
Original price
$152.95
$152.95 - $152.95
Current price $152.95
Description
Geothermal Energy Systems

The book encounters basic knowledge about geothermal technology for the utilization of geothermal resources. The book helps to understand the basic geology needed for the utilization of geothermal energy, shows up the practice to make access to geothermal reservoirs by drilling and the engineering of the reservoir by enhancing methods. The book describes the technology to make use of the Earth?s heat for direct use, power, and/or chill and gives boundary conditions for its economic and environmental utilization. A special focus is made on enhanced or engineered geothermal systems (EGS) which are based on concepts which bring a priori less productive reservoirs to an economic use.

From the contents:

  • Reservoir Definition
  • Exploration Methods
  • Drilling into Geothermal Reservoirs
  • Enhancing Geothermal Reservoirs
  • Geothermal Reservoir Simulation
  • Energetic Use of EGS Reservoirs
  • Economic Performance and Environmental Assessment
  • Deployment of Enhanced Geothermal Systems plants and CO2-mitigation
Spezialisten für Hochenthalpie-Lagerstätten erklären in diesem Band von Grund auf und sehr ausführlich, wie sich tiefe und oberflächennahe Geothermie im Kontext verschiedenster geologischer Situationen Europas ausbeuten lässt.

Preface xv

List of Contributors xix

1 Reservoir Definition 1
Patrick Ledru and Laurent Guillou Frottier

1.1 Expressions of Earth’s Heat Sources 1

1.1.1 Introduction to Earth’s Heat and Geothermics 1

1.1.2 Cooling of the Core, Radiogenic Heat Production, and Mantle Cooling 2

1.1.3 Mantle Convection and Heat Loss beneath the Lithosphere 4

1.1.3.1 Mantle Heat Flow Variations 4

1.1.3.2 Subcontinental Thermal Boundary Condition 5

1.1.4 Fourier’ Law and Crustal Geotherms 6

1.1.5 Two-dimensional Effects of Crustal Heterogeneities on Temperature Profiles 8

1.1.5.1 Steady-state Heat Refraction 8

1.1.5.2 Transient Effects 10

1.1.5.3 Role of Anisotropy of Thermal Conductivity 10

1.1.6 Fluid Circulation and Associated Thermal Anomalies 12

1.1.7 Summary 13

1.2 Heat Flow and Deep Temperatures in Europe 13

1.2.1 Far-field Conditions 14

1.2.2 Thermal Conductivity, Temperature Gradient, and Heat Flow Density in Europe 17

1.2.3 Calculating Extrapolated Temperature at Depth 18

1.2.4 Summary 20

1.3 Conceptual Models of Geothermal Reservoirs 21

1.3.1 The Geology of Potential Heat Sources 22

1.3.2 Porosity, Permeability, and Fluid Flow in Relation to the Stress Field 27

1.3.3 Summary 30

References 32

2 Exploration Methods 37
David Bruhn, Adele Manzella, François Vuataz, James Faulds, Inga Moeck, and Kemal Erbas

2.1 Introduction 37

2.2 Geological Characterization 39

2.3 Relevance of the Stress Field for EGS 44

2.4 Geophysics 52

2.4.1 Electrical Methods (DC, EM, MT) 53

2.4.1.1 Direct Current (DC) Methods 54

2.4.1.2 Electromagnetic Methods 55

2.4.1.3 The Magnetotelluric Method 55

2.4.1.4 Active Electromagnetic Methods 63

2.4.2 Seismic Methods 66

2.4.2.1 Active Seismic Sources 67

2.4.2.2 Seismic Anisotropy and Fractures 71

2.4.2.3 Passive Seismic Methods 73

2.4.3 Potential Methods 76

2.4.3.1 Gravity 76

2.4.3.2 Geomagnetics and Airborne Magnetic 78

2.4.4 Data Integration 80

2.4.4.1 Joint Inversion Procedures 81

2.5 Geochemistry 81

2.5.1 Introduction 81

2.5.2 Fluids and Minerals as Indicators of Deep Circulation and Reservoirs 83

2.5.3 Mud and Fluid Logging while Drilling 85

2.5.4 Hydrothermal Reactions 86

2.5.4.1 Boiling and Mixing 88

2.5.5 Chemical Characteristics of Fluids 91

2.5.5.1 Sodium–Chloride Waters 92

2.5.5.2 Acid–Sulfate Waters 92

2.5.5.3 Sodium–Bicarbonate Waters 93

2.5.5.4 Acid Chloride–Sulfate Waters 93

2.5.6 Isotopic Characteristics of Fluids 94

2.5.7 Estimation of Reservoir Temperature 97

2.5.7.1 Geothermometric Methods for Geothermal Waters 98

2.5.7.2 Silica Geothermometer 98

2.5.7.3 Ionic Solutes Geothermometers 99

2.5.7.4 Gas (Steam) Geothermometers 100

2.5.7.5 Isotope Geothermometers 100

2.5.8 Forecast of Corrosion and Scaling Processes 100

References 103

Further Reading 111

3 Drilling into Geothermal Reservoirs 113
Axel Sperber, Inga Moeck, and Wulf Brandt

3.1 Introduction 113

3.1.1 Geothermal Environments and General Tasks 114

3.2 Drilling Equipment and Techniques 115

3.2.1 Rigs and Their Basic Concepts 115

3.2.1.1 Hoisting System 115

3.2.1.2 Top Drive or Rotary Table 115

3.2.1.3 Mud Pumps 116

3.2.1.4 Solids Control Equipment 118

3.2.1.5 Blowout Preventer (BOP) 118

3.2.2 Drillstring 118

3.2.2.1 Bottomhole Assembly 118

3.2.2.2 Drillpipe 121

3.2.3 Directional Drilling 122

3.2.3.1 Downhole Motor (DHM) 122

3.2.3.2 Rotary Steerable Systems (RSS) 122

3.2.3.3 Downhole Measuring System (MWD) with Signal Transmission Unit (Pulser) 123

3.2.3.4 Surface Receiver to Receive and Decode the Pulser Signals 123

3.2.3.5 Special Computer Program to Evaluate Where the Bottom of the Hole Is at Survey Depth 123

3.2.4 Coring 125

3.3 Drilling Mud 125

3.3.1 Mud Types 126

3.3.1.1 Water-based Mud 126

3.3.1.2 Oil-based Mud 126

3.3.1.3 Foams 126

3.3.1.4 Air 126

3.3.2 The Importance of Mud Technology in Certain Geological Environments 127

3.3.2.1 Drilling through Plastic/Creeping Formations (Salt, Clay) 127

3.3.2.2 Formation Pressure and Formation Damage (Hydrostatic Head, Ecd) 127

3.4 Casing and Cementation 128

3.4.1 Casing and Liner Concepts 129

3.4.2 Casing Materials 129

3.4.3 Pipe Centralization 131

3.4.4 Cementation 132

3.4.5 Cement Slurries, ECD 133

3.4.6 Influence of Temperature on Casing and Cement 136

3.5 Planning a Well 136

3.5.1 Geological Forecast 136

3.5.1.1 Target Definition 137

3.5.1.2 Pore Pressures/Fracture Pressure/Temperature 137

3.5.1.3 Critical Formations/Fault Zones 138

3.5.1.4 Hydrocarbon Bearing Formations 138

3.5.1.5 Permeabilities 138

3.5.2 Well Design 139

3.5.2.1 Trajectory 139

3.5.2.2 Casing Setting Depths 139

3.5.2.3 Casing Sizes 139

3.5.2.4 Casing String Design 140

3.6 Drilling a Well 142

3.6.1 Contract Types and Influence on Project Organization 142

3.6.1.1 Turnkey Contract 142

3.6.1.2 Meter-contract 143

3.6.1.3 Time-based Contract 143

3.6.1.4 Incentive Contract 143

3.6.2 Site Preparation and Infrastructure 144

3.6.2.1 General 144

3.6.2.2 Excavating and Trenching 144

3.6.2.3 Environmental Impact (Noise, Pollution Prevention) 144

3.6.3 Drilling Operations 144

3.6.4 Problems and Trouble Shooting 145

3.7 Well Completion Techniques 148

3.7.1 Casing (Please Refer Also to ‘‘Casing String Design’’) 148

3.7.1.1 Allowance of Vertical Movement of Casing 148

3.7.1.2 Pretensioning 148

3.7.1.3 Liner in Pay Zone (Slotted/Predrilled) or Barefoot Completion 150

3.7.2 Wellheads, Valves and so on 150

3.7.3 Well Completion without Pumps with Naturally Flowing Wells 151

3.7.4 Well Completion with Pumps 152

3.8 Risks 152

3.8.1 Evaluating Risks 153

3.8.1.1 Poor or Wrong Geological Profile Forecast 153

3.8.1.2 Poor Well Design 153

3.8.2 Technical Risks 154

3.8.2.1 Failure of Surface Equipment 154

3.8.2.2 Failure of Subsurface Equipment 154

3.8.3 Geological–Technical Risks 155

3.8.4 Geological Risks 157

3.8.5 Geotectonical Risks 159

3.9 Case Study Groß Schönebeck Well 159

3.10 Economics (Drilling Concepts) 162

3.10.1 Influence of Well Design on Costs 164

3.10.1.1 Casing Scheme 164

3.10.1.2 Vertical Wells versus Deviated Wells 165

3.11 Recent Developments, Perspectives in R&D 165

3.11.1 Technical Trends 165

3.11.1.1 Topdrive 166

3.11.1.2 Rotary Steerable Systems (RSS) 166

3.11.1.3 Multilateral Wells 169

3.11.2 Other R&D-Themes of high Interest 169

References 170

4 Enhancing Geothermal Reservoirs 173
Thomas Schulte, Günter Zimmermann, Francois Vuataz, Sandrine Portier, Torsten Tischner, Ralf Junker, Reiner Jatho, and Ernst Huenges

4.1 Introduction 173

4.1.1 Hydraulic Stimulation 174

4.1.2 Thermal Stimulation 174

4.1.3 Chemical Stimulation 174

4.2 Initial Situation at the Specific Location 174

4.2.1 Typical Geological Settings 174

4.2.2 Appropriate Stimulation Method According to Geological System and Objective 175

4.3 Stimulation and Well path Design 176

4.4 Investigations Ahead of Stimulation 178

4.5 Definition and Description of Methods (Theoretical) 180

4.5.1 Hydraulic Stimulation 180

4.5.1.1 General 180

4.5.1.2 Waterfrac Treatments 181

4.5.1.3 Gel-Proppant Treatments 182

4.5.1.4 Hybrid Frac Treatments 183

4.5.2 Thermal Stimulation 183

4.5.3 Chemical Stimulation 184

4.6 Application (Practical) 187

4.6.1 Hydraulic Stimulation 187

4.6.1.1 Induced Seismicity 189

4.6.2 Thermal Stimulation 193

4.6.3 Chemical Stimulation 194

4.7 Verification of Treatment Success 197

4.7.1 General 197

4.7.1.1 Wireline Based Evaluation 197

4.7.1.2 Hydraulic Well Tests 197

4.7.1.3 Tracer Testing 198

4.7.1.4 Monitoring Techniques 200

4.7.2 Evaluation of Chemical Stimulations 201

4.8 Outcome 202

4.8.1 Hydraulic Stimulation 202

4.8.1.1 Hydraulic Stimulation – Soultz 202

4.8.1.2 Hydraulic Stimulation Groß Schönebeck 203

4.8.2 Thermal Stimulation 204

4.8.3 Chemical Stimulation 204

4.9 Sustainability of Treatment 206

4.9.1 Hydraulic Stimulation 206

4.9.1.1 Proppant Selection 206

4.9.1.2 Coated Proppants 209

4.9.2 Thermal Stimulation 209

4.9.3 Chemical Stimulation 210

4.10 Case Studies 210

4.10.1 Groß Schönebeck 210

4.10.1.1 Introduction 210

4.10.1.2 Hydraulic Fracturing Treatments in GrSk3/ 90 211

4.10.1.3 Hydraulic Fracturing in Sandstones (Gel-Proppant Stimulation) 211

4.10.1.4 Hydraulic fracturing in Volcanics (Waterfrac Stimulation) 212

4.10.1.5 Hydraulic Fracturing Treatments in GrSk4/ 05 213

4.10.1.6 Hydraulic Fracturing Treatment in Volcanics (Waterfrac Stimulation) 214

4.10.1.7 Hydraulic Fracturing in Sandstones (Gel-Proppant Stimulation) 215

4.10.1.8 Conclusions 216

4.10.2 Soultz 217

4.10.2.1 Hydraulic Stimulation 217

4.10.2.2 Chemical Stimulation 223

4.10.3 Horstberg 226

4.10.3.1 Introduction 226

4.10.3.2 Fracturing Experiments 228

4.10.3.3 Summary and Conclusion 232

References 233

Further Reading 240

5 Geothermal Reservoir Simulation 245
Olaf Kolditz, Mando Guido Blöcher, Christoph Clauser, Hans-Jörg G. Diersch, Thomas Kohl, Michael Kühn, Christopher I. McDermott, Wenqing Wang, Norihiro Watanabe, Günter Zimmermann, and Dominique Bruel

5.1 Introduction 245

5.1.1 Geothermal Modeling 246

5.1.2 Uncertainty Analysis 247

5.2 Theory 248

5.2.1 Conceptual Approaches 248

5.2.2 THM Mechanics 248

5.2.2.1 Heat Transport 249

5.2.2.2 Liquid Flow in Deformable Porous Media 250

5.2.2.3 Thermoporoelastic Deformation 250

5.3 Reservoir Characterization 250

5.3.1 Reservoir Properties 251

5.3.1.1 Reservoir Permeability 251

5.3.1.2 Poroperm Relationships 251

5.3.2 Fluid Properties 254

5.3.2.1 Density and Viscosity 254

5.3.2.2 Heat Capacity and Thermal Conductivity 255

5.3.3 Supercritical Fluids 257

5.3.4 Uncertainty Assessment 258

5.4 Site Studies 260

5.5 Groß Schönebeck 260

5.5.1 Introduction 260

5.5.2 Model Description 261

5.5.2.1 Geology 261

5.5.2.2 Structure 262

5.5.2.3 Thermal Conditions 263

5.5.2.4 Hydraulic Conditions 263

5.5.3 Modeling Approach 264

5.5.4 Results 265

5.5.5 Conclusions 268

5.6 Bad Urach 268

5.6.1 The Influence of Parameter Uncertainty on Reservoir Evolution 268

5.6.1.1 Conceptual Model 268

5.6.1.2 Simulation Results 270

5.6.1.3 Stimulated Reservoir Model 270

5.6.1.4 Monte Carlo Analysis 271

5.6.1.5 Conclusions 275

5.6.2 The Influence of Coupled Processes on Differential Reservoir Cooling 275

5.6.2.1 Conceptual Model 275

5.6.2.2 Development of Preferential Flow Paths due to Positive Feedback Loops in Coupled Processes and Potential Reservoir Damage 276

5.6.3 The Importance of Thermal Stress in the Rock Mass 278

5.7 Rosemanowes (United Kingdom) 279

5.8 Soultz-sous-Forets (France) 280

5.9 KTB (Germany) 284

5.9.1 Introduction 284

5.9.2 Geomechanical Facies and Modeling the HM Behavior of the KTB Pump Test 285

5.10 Stralsund (Germany) 287

5.10.1 Site Description 290

5.10.2 Model Setup 290

5.10.3 Long-Term Development of Reservoir Properties 291

References 293

6 Energetic Use of EGS Reservoirs 303
Ali Saadat, Stephanie Frick, Stefan Kranz, and Simona Regenspurg

6.1 Utilization Options 303

6.1.1 Energetic Considerations 303

6.1.2 Heat Provision 306

6.1.3 Chill Provision 308

6.1.4 Power Provision 312

6.2 EGS Plant Design 316

6.2.1 Geothermal Fluid Loop 316

6.2.1.1 Fluid Properties 317

6.2.1.2 Operational Reliability Aspects 323

6.2.1.3 Fluid Production Technology 329

6.2.2 Heat Exchanger 332

6.2.2.1 Heat Exchanger Analysis – General Considerations 333

6.2.2.2 Selection of Heat Exchangers 335

6.2.2.3 Specific Issues Related to Geothermal Energy 337

6.2.3 Direct Heat Use 338

6.2.4 Binary Power Conversion 341

6.2.4.1 General Cycle Design 342

6.2.4.2 Working Fluid 347

6.2.4.3 Recooling Systems 352

6.2.5 Combined Energy Provision 359

6.2.5.1 Cogeneration 359

6.2.5.2 Serial Connection 360

6.2.5.3 Parallel Connection 361

6.3 Case Studies 362

6.3.1 Power Provision 363

6.3.1.1 Objective 363

6.3.1.2 Design Approach 363

6.3.1.3 Gross Power versus Net Power Maximization 364

6.3.2 Power and Heat Provision 366

6.3.2.1 Objective 366

6.3.2.2 Design Approach 367

6.3.2.3 Serial versus Parallel Connection 367

References 368

7 Economic Performance and Environmental Assessment 373
Stephanie Frick, Jan Diederik Van Wees, Martin Kaltschmitt, and Gerd Schröder

7.1 Introduction 373

7.2 Economic Aspects for Implementing EGS Projects 375

7.2.1 Levelized Cost of Energy (LCOE) 375

7.2.1.1 Methodological Approach 376

7.2.1.2 Cost Analysis 377

7.2.1.3 Case Studies 383

7.2.2 Decision and Risk Analysis 393

7.2.2.1 Methodology 394

7.2.2.2 Case Study 397

7.3 Impacts on the Environment 405

7.3.1 Life Cycle Assessment 406

7.3.1.1 Methodological Approach 406

7.3.1.2 Case Studies 408

7.3.2 Impacts on the Local Environment 412

7.3.2.1 Local Impacts 412

7.3.2.2 Environmental Impact Assessment 417

References 419

8 Deployment of Enhanced Geothermal Systems Plants and CO 2 Mitigation 423
Ernst Huenges

8.1 Introduction 423

8.2 CO 2 Emission by Electricity Generation from Different Energy Sources 423

8.3 Costs of Mitigation of CO 2 Emissions 424

8.4 Potential Deployment 426

8.5 Controlling Factors of Geothermal Deployment 426

8.5.1 Technological Factors 426

8.5.2 Economic and Political Factors 427

References 428

Color Plates 429

Index 445

"It can be said that this book achieves his goal to be a reference of great value to scientists and decision-makers in research and politics, as well as those giving courses in petroleum engineering, for example. It provides a good overview on the state of the art of all the aspects, which need to be considered, when installing an Enhanced Geothermal Systems Plant. It should not be missed in the bookshelf's of people dealing with geothermal use." (Corrosion News, January 2011)

Research activities of Ernst Huenges aim at providing an environmentally benign and sustainable geothermal energy and subsurface storage of heat and cold. In his focus the supply of geothermal energy should become site-independent in the long-term and tailored according to demand and thus supplementing, at the same time, other renewable energy sources. This requires interdisciplinary approaches and synergies seen in connection with a series of developing fields of research involving the editor’s experimental expertise on processes in deep reservoirs.

The book encounters basic knowledge about geothermal technology for the utilization of geothermal resources. The book helps to understand the basic geology needed for the utilization of geothermal energy, shows up the practice to make access to geothermal reservoirs by drilling and the engineering of the reservoir by enhancing methods. The book describes the technology to make use of the Earth?s heat for direct use, power, and/or chill and gives boundary conditions for its economic and environmental utilization. A special focus is made on enhanced or engineered geothermal systems (EGS) which are based on concepts which bring a priori less productive reservoirs to an economic use.

From the contents:

  • Reservoir Definition
  • Exploration Methods
  • Drilling into Geothermal Reservoirs
  • Enhancing Geothermal Reservoirs
  • Geothermal Reservoir Simulation
  • Energetic Use of EGS Reservoirs
  • Economic Performance and Environmental Assessment
  • Deployment of Enhanced Geothermal Systems plants and CO2-mitigation

PUBLISHER:

Wiley

ISBN-13:

9783527408313

BINDING:

Hardback

BISAC:

Science

LANGUAGE:

English

Request a Quote

Interested in this product? Get a personalized quote.