Ir a contenido
Our company is 100% woman-owned, adding a unique perspective to our commitment to excellence!
Our company is 100% woman-owned, adding a unique perspective to our commitment to excellence!

Beyond-CMOS Nanodevices 1

Agotado
Precio original $214.95 - Precio original $214.95
Precio original
$214.95
$214.95 - $214.95
Precio actual $214.95
Description
This book offers a comprehensive review of the state-of-the-art in innovative Beyond-CMOS nanodevices for developing novel functionalities, logic and memories dedicated to researchers, engineers and students. It particularly focuses on the interest of nanostructures and nanodevices (nanowires, small slope switches, 2D layers, nanostructured materials, etc.) for advanced More than Moore (RF-nanosensors-energy harvesters, on-chip electronic cooling, etc.) and Beyond-CMOS logic and memories applications.

ACKNOWLEDGMENTS xiii

GENERAL INTRODUCTION xv
Francis BALESTRA

PART 1. SILION NANOWIRE BIOCHEMICAL SENSORS 1

PART 1. INTRODUCTION 3
Per-Erik HELLSTRÖM and Mikael ÖSTLING

CHAPTER 1. FABRICATION OF NANOWIRES 5
Jens BOLTEN, Per-Erik HELLSTRÖM, Mikael ÖSTLING, CĂ©line TERNON and Pauline SERRE

1.1. Introduction 5

1.2. Silicon nanowire fabrication with electron beam lithography 6

1.2.1. Key requirements 6

1.2.2. Why electron beam lithography? 7

1.2.3. Lithographic requirements 8

1.2.4. Tools, resist materials and development processes 9

1.2.5. Exposure strategies and proximity effect correction 10

1.2.6. Technology limitations and how to circumvent them 11

1.3. Silicon nanowire fabrication with sidewall transfer lithography 14

1.4. Si nanonet fabrication 17

1.4.1. Si NWs fabrication 18

1.4.2. Si nanonet assembling 19

1.4.3. Si nanonet morphology and properties 19

1.5. Acknowledgments 21

1.6. Bibliography 21

CHAPTER 2. FUNCTIONALIZATION OF SI-BASED NW FETs FOR DNA DETECTION 25
Valérie STAMBOULI, Céline TERNON, Pauline SERRE and Louis FRADETAL

2.1. Introduction 25

2.2. Functionalization process 27

2.3. Functionalization of Si nanonets for DNA biosensing 28

2.3.1. Detection of DNA hybridization on the Si nanonet by fluorescence microscopy 31

2.3.2. Preliminary electrical characterizations of NW networks 33

2.4. Functionalization of SiC nanowire-based sensor for electrical DNA biosensing35

2.4.1. SiC nanowire-based sensor functionalization process 35

2.4.2. DNA electrical detection from SiC nanowire-based sensor 38

2.5. Acknowledgments 39

2.6. Bibliography 40

CHAPTER 3. SENSITIVITY OF SILICON NANOWIRE BIOCHEMICAL SENSORS 43
Pierpaolo PALESTRI, Mireille MOUIS, Aryan AFZALIAN, Luca SELMI, Federico PITTINO, Denis FLANDRE and Gérard GHIBAUDO

3.1. Introduction 43

3.1.1. Definitions 43

3.1.2. Main parameters affecting the sensitivity 47

3.2. Sensitivity and noise 47

3.3. Modeling the sensitivity of Si NW biosensors 50

3.3.1. Modeling the electrolyte 52

3.4. Sensitivity of random arrays of 1D nanostructures 54

3.4.1. Electrical characterization 55

3.4.2. Low-frequency noise characterization 56

3.4.3. Simulation of electron conduction in random networks of 1D nanostructures 56

3.4.4. Discussion 59

3.5. Conclusions 59

3.6. Acknowledgments 60

3.7. Bibliography 60

CHAPTER 4. INTEGRATION OF SILICON NANOWIRES WITH CMOS 65
Per-Erik HELLSTRÖM, Ganesh JAYAKUMAR and Mikael ÖSTLING

4.1. Introduction 65

4.2. Overview of CMOS process technology 66

4.3. Integration of silicon nanowire after BEOL 66

4.4. Integration of silicon nanowires in FEOL 67

4.5. Sensor architecture design 69

4.6. Conclusions 71

4.7. Bibliography 72

CHAPTER 5. PORTABLE, INTEGRATED LOCK-IN-AMPLIFIER-BASED SYSTEM FOR REAL-TIME IMPEDIMETRIC MEASUREMENTS ON NANOWIRES BIOSENSORS 73
Michele ROSSI and Marco TARTAGNI

5.1. Introduction 73

5.2. Portable stand-alone system 74

5.3. Integrated impedimetric interface 76

5.4. Impedimetric measurements on nanowire sensors 78

5.5. Bibliography 81

PART 2. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR ENERGY HARVESTING 83

PART 2. INTRODUCTION 85
Enrico SANGIORGI

CHAPTER 6. VIBRATIONAL ENERGY HARVESTING 89
Luca LARCHER, Saibal ROY, Dhiman MALLICK, Pranay PODDER, Massimo DE VITTORIO, Teresa TODARO, Francesco GUIDO, Alessandro BERTACCHINI, Ronan HINCHET, Julien KERAUDY and Gustavo ARDILA

6.1. Introduction 89

6.2. Piezoelectric energy transducer 91

6.2.1. Introduction 91

6.2.2. State-of-the-art devices and materials 92

6.2.3. MEMS piezoelectric vibration energy harvesting transducers 95

6.2.4. RMEMS prototypes characterization and discussions of experimental results 102

6.2.5. Near field characterization techniques 104

6.2.6. Dedicated electro-mechanical models for piezoelectric transducer design 106

6.3. Electromagnetic energy transducers 109

6.3.1. Introduction 109

6.3.2. State-of-the-art devices and materials 109

6.3.3. Vibration energy harvester exploiting both the piezoelectric and electromagnetic effect 122

6.3.4. Device design 125

6.4. Bibliography 128

CHAPTER 7. THERMAL ENERGY HARVESTING 135
Mireille MOUIS, Emigdio CHÁVEZ-ÁNGEL, Clivia SOTOMAYOR-TORRES, Francesc ALZINA, Marius V. COSTACHE, Androula G. NASSIOPOULOU, Katerina VALALAKI, Emmanouel HOURDAKIS, Sergio O. VALENZUELA, Bernard VIALA, Dmitry ZAKHAROV, Andrey SHCHEPETOV and Jouni AHOPELTO

7.1. Introduction 135

7.1.1. Basics of thermoelectric conversion 136

7.1.2. Strategies to increase ZT 137

7.1.3. Heavy-metal-free TE generation 140

7.1.4. Alternatives to TE harvesting for self-powered solid-state microsystems 141

7.2. Thermal transport at nanoscale 142

7.2.1. Brief review of nanoscale thermal conductivity 143

7.2.2. The effect of phonon confinement 146

7.2.3. Fabrication of ultrathin free-standing silicon membranes 153

7.2.4. Advanced methods of characterizing phonon dispersion, lifetimes and thermal conductivity 156

7.3. Porous silicon for thermal insulation on silicon wafers 172

7.3.1. Introduction 172

7.3.2. Thermal conductivity of nanostructured porous Si 172

7.3.3. Thermal isolation using thick porous Si layers 176

7.3.4. Thermoelectric generator using porous Si thermal isolation 177

7.4. Spin dependent thermoelectric effects 185

7.4.1. Physical principle and interest for thermal energy harvesting 186

7.4.2. Demonstration of the magnon drag effect 188

7.5. Composites of thermal shape memory alloy and piezoelectric materials 192

7.5.1. Introduction 192

7.5.2. Physical principle and interest for thermal energy harvesting 193

7.5.3. Novelty and realizations 194

7.5.4. Theoretical considerations 195

7.5.5. Examples of use 196

7.5.6. Summary of composite harvesting by the combination of SMA and piezoelectric materials 204

7.6. Conclusions 204

7.7. Bibliography 205

CHAPTER 8. NANOWIRE BASED SOLAR CELLS 221
Mauro ZANUCCOLI, Anne KAMINSKI-CACHOPO, JérÎme MICHALLON, Vincent CONSONNI, Igar SEMENIKHIN, Mehdi DAANOUNE, Frédérique DUCROQUET, David KOHEN, Christine MORIN and Claudio FIEGNA

8.1 Introduction 221

8.2. Design of NW-based solar cells 223

8.2.1. Geometrical optimization of NW-based solar cells by numerical simulations 223

8.2.2. TCAD simulation of NW-based solar cells 230

8.3. Fabrication and opto-electrical characterization of NW-based solar cells 235

8.3.1. Elaboration of NW-based solar cells 235

8.3.2. Opto-electrical characterization of NW-based solar cells 236

8.4 Conclusion 243

8.5 Acknowledgments 243

8.6 Bibliography 243

CHAPTER 9. SMART ENERGY MANAGEMENT AND CONVERSION 249
Wensi WANG, James F. ROHAN, Ningning WANG, Mike HAYES, Aldo ROMANI, Enrico MACRELLI, Michele DINI, Matteo FILIPPI, Marco TARTAGNI and Denis FLANDRE

9.1. Introduction 249

9.2. Power management solutions for energy harvesting devices 251

9.2.1. Ultra-low voltage thermoelectric energy harvesting 251

9.2.2. Sub-1mW photovoltaic energy harvesting 256

9.2.3. Piezoelectric and micro-electromagnetic energy harvesting 260

9.2.4. DC/DC power management for future micro-generator 262

9.3. Sub-mW energy storage solutions 266

9.4. Conclusions 270

9.5. Bibliography 271

PART 3. ON-CHIP ELECTRONIC COOLING 277

CHAPTER 10. TUNNEL JUNCTION ELECTRONIC COOLERS 279
Martin PREST, James RICHARDSON-BULLOCK, Terry WHALL, Evan PARKER and David LEADLEY

10.1. Introduction and motivation 279

10.1.1. Existing cryogenic technology 280

10.2. Tunneling junctions as coolers 281

10.2.1. The NIS junction 281

10.2.2. Cooling power 284

10.2.3. Thermometry 286

10.2.4. The superconductor-insulator-normal metal-insulator-superconductor (SINIS) structure 287

10.2.5. Double junction superconductor-silicon-superconductor (SSmS) cooler 288

10.3. Limitations to cooling 289

10.3.1. States within the superconductor gap 290

10.3.2. Joule heating 291

10.3.3. Series resistance 291

10.3.4. Quasi-particle-related heating 293

10.3.5. Andreev reflection 295

10.4. Heavy fermion-based coolers 297

10.5. Summary 299

10.6. Bibliography 300

CHAPTER 11. SILICON-BASED COOLING ELEMENTS 303
David LEADLEY, Martin PREST, Jouni AHOPELTO, Tom BRIEN, David GUNNARSSON, Phil MAUSKOPF, Juha MUHONEN, Maksym MYRONOV, Hung NGUYEN, Evan PARKER, Mika PRUNNILA, James RICHARDSON-BULLOCK, Vishal SHAH, Terry WHALL and Qing-Tai ZHAO

11.1. Introduction to semiconductor-superconductor tunnel junction coolers 303

11.2. Silicon-based Schottky barrier junctions 304

11.3. Carrier-phonon coupling in strained silicon 308

11.3.1. Measurement of electron-phonon coupling constant 312

11.4. Strained silicon Schottky barrier mK coolers 315

11.5. Silicon mK coolers with an oxide barrier [GUN 13] 318

11.5.1. Reduction of sub-gap leakage 318

11.5.2. Effects of strain 319

11.6. The silicon cold electron bolometer 321

11.7. Integration of detector and electronics 324

11.8. Summary and future prospects 325

11.9. Acknowledgments 327

11.10 Bibliography 327

CHAPTER 12. THERMAL ISOLATION THROUGH NANOSTRUCTURING. 331
David LEADLEY, Vishal SHAH, Jouni AHOPELTO, Francesc ALZINA, Emigdio CHÁVEZ-ÁNGEL, Juha MUHONEN, Maksym MYRONOV, Androula G. NASSIOPOULOU, Hung NGUYEN, Evan PARKER, Jukka PEKOLA, Martin PREST, Mika PRUNNILA, Juan Sebastian REPARAZ, Andrey SHCHEPETOV, Clivia SOTOMAYOR-TORRES, Katerina VALALAKI and Terry WHALL

12.1. Introduction 331

12.2. Lattice cooling by physical nanostructuring 331

12.3. Porous Si membranes as cryogenic thermal isolation platforms 337

12.3.1. Porous Si micro-coldplates 337

12.3.2. Porous Si thermal conductivity 339

12.4. Crystalline membrane platforms 343

12.4.1. Strained germanium membranes 343

12.4.2. Thermal conductance measurements in Si and Ge membranes 350

12.4.3. Epitaxy-compatible thermal isolation platform 355

12.5. Summary of thermal conductance measurements 355

12.6. Acknowledgments. 358

12.7. Bibliography 358

PART 4. NEW MATERIALS, DEVICES AND TECHNOLOGIES FOR RF APPLICATIONS 365

PART 4. INTRODUCTION 367
Androula G. NASSIOPOULOU

CHAPTER 13. SUBSTRATE TECHNOLOGIES FOR SILICON-INTEGRATED RF AND MM-WAVE PASSIVE DEVICES 373
Androula G. NASSIOPOULOU, Panagiotis SARAFIS, Jean-Pierre RASKIN, Hanza ISSA, Philippe FERRARI

13.1. Introduction 373

13.2. High-resistivity Si substrate for RF 374

13.2.1. Losses along coplanar waveguide transmission lines 375

13.2.2. Crosstalk 380

13.2.3. Nonlinearities along CPW lines 384

13.3. Porous Si substrate technology 385

13.3.1. General properties of porous Si 386

13.3.2. Dielectric properties of porous Si 389

13.3.3. Broadband electrical characterization of CPWT Lines on porous Si 393

13.3.4. Inductors on porous Si397

13.3.5. Antennas on porous Si399

13.4. Comparison between HR Si and local porous Si substrate technologies 400

13.4.1. Comparison of similar CPW TLines on different substrates 400

13.4.2. Comparison of inductors on different RF substrates 404

13.5. Design of slow-wave CPWs and filters on porous silicon 404

13.5.1. Slow-wave CPW TLines on porous Si 405

13.5.2. Simulation results for S-CPW TLines 406

13.5.3. Stepped impedance low-pass filter on porous silicon 408

13.5.4. Simulation results for filters 409

13.6. Conclusion 411

13.7. Acknowledgments 411

13.8. Bibliography 411

CHAPTER 14. METAL NANOLINES AND ANTENNAS FOR RF AND MM-WAVE APPLICATIONS 419
Philippe BENECH, Chuan-Lun HSU, Gustavo ARDILA, Panagiotis SARAFIS and Androula G. NASSIOPOULOU

14.1. Introduction 419

14.2. Metal nanowires (nanolines) 420

14.2.1. General properties 420

14.2.2. Transmission nanolines in microstrip configuration: characterization and modeling 426

14.2.3. Transmission nanolines in CPW configuration: fabrication, characterization and modeling 430

14.2.4. Characterization up to 200 GHz 440

14.3. Antennas 441

14.3.1. On-chip antennas: general 441

14.3.2. On-chip antenna characterization method 443

14.3.3. Measurement results 444

14.3.4. Discussion on antenna results 451

14.4. Conclusion 451

14.5. Acknowledgments 452

14.6. Bibliography 452

CHAPTER 15. NANOSTRUCTURED MAGNETIC MATERIALS FOR HIGH-FREQUENCY APPLICATIONS 457
Saibal ROY, Jeffrey GODSELL and Tuhin MAITY

15.1. Introduction 457

15.2. Power conversion and integration 457

15.3. Materials and integration 459

15.4. Controlling the magnetic properties 463

15.5. Magnetic properties of nanocomposite materials 467

15.6. Magnetic properties of nanomodulated continuous films 470

15.7. Conclusion 478

15.8. Bibliography 479

LIST OF AUTHORS 485

INDEX 493

Francis Balestra received the M.S. and Ph.D. degrees in electronics from the Institut Polytechnique, Grenoble, France, in 1982 and 1985, respectively. He is a member of the European Academy of Sciences, of the Advisory Committee of the Chinese Journal of Semiconductors and Chinese Physics B and received the Blondel Medal (French SEE) in 2001. He is also member of the European ENIAC Scientific Community Council and several ENIAC/AENEAS Working Groups. F. Balestra has coauthored over 130 publications in international scientific journals, 240 communications at international conferences (more than 70 invited papers and review articles), and 20 books or chapters.


PUBLISHER:

Wiley

ISBN-13:

9781848216549

BINDING:

Hardback

BISAC:

Technology & Engineering

LANGUAGE:

English

Request a Quote

Interested in this product? Get a personalized quote.