Ir a contenido
Our company is 100% woman-owned, adding a unique perspective to our commitment to excellence!
Our company is 100% woman-owned, adding a unique perspective to our commitment to excellence!

3D and Circuit Integration of MEMS

por Wiley-VCH
Agotado
Precio original $194.95 - Precio original $194.95
Precio original
$194.95
$194.95 - $194.95
Precio actual $194.95
Description
3D and Circuit Integration of MEMS

Explore heterogeneous circuit integration and the packaging needed for practical applications of microsystems

MEMS and system integration are important building blocks for the “More-Than-Moore” paradigm described in the International Technology Roadmap for Semiconductors. And, in 3D and Circuit Integration of MEMS, distinguished editor Dr. Masayoshi Esashi delivers a comprehensive and systematic exploration of the technologies for microsystem packaging and heterogeneous integration. The book focuses on the silicon MEMS that have been used extensively and the technologies surrounding system integration.

You’ll learn about topics as varied as bulk micromachining, surface micromachining, CMOS-MEMS, wafer interconnection, wafer bonding, and sealing. Highly relevant for researchers involved in microsystem technologies, the book is also ideal for anyone working in the microsystems industry. It demonstrates the key technologies that will assist researchers and professionals deal with current and future application bottlenecks.

Readers will also benefit from the inclusion of:

  • A thorough introduction to enhanced bulk micromachining on MIS process, including pressure sensor fabrication and the extension of MIS process for various advanced MEMS devices
  • An exploration of epitaxial poly Si surface micromachining, including process condition of epi-poly Si, and MEMS devices using epi-poly Si
  • Practical discussions of Poly SiGe surface micromachining, including SiGe deposition and LP CVD polycrystalline SiGe
  • A concise treatment of heterogeneously integrated aluminum nitride MEMS resonators and filters
  • Perfect for materials scientists, electronics engineers, and electrical and mechanical engineers, 3D and Circuit Integration of MEMS will also earn a place in the libraries of semiconductor physicists seeking a one-stop reference for circuit integration and the practical application of microsystems.Dieses Referenzwerk ist eine umfassende und systematische Einführung in die Technologien für das Packaging und die heterogene Integration von Mikrosystemen. Der Schwerpunkt liegt auf MEMS aus Silikon, die in großem Umfang zum Einsatz kommen, und auf Technologien zur Systemintegration. Die Themenbereiche umfassen u. a. Bulk-Mikromechanik, Oberflächen-Mikromechanik, CMOS-MEMS, Wafer-Verbindungen, Waferbonden und Wafer-Sealing.

    Part I Introduction 1

    1 Overview 3
    Masayoshi Esashi

    References 10

    Part II System on Chip 13

    2 Bulk Micromachining 15
    Xinxin Li and Heng Yang

    2.1 Process Basis of Bulk Micromachining Technologies 16

    2.2 Bulk Micromachining Based on Wafer Bonding 20

    2.2.1 SOI MEMS 20

    2.2.2 Cavity SOI Technology 27

    2.2.3 Silicon on Glass Processes: Dissolved Wafer Process (DWP) 29

    2.3 Single-Wafer Single-Side Processes 34

    2.3.1 Single-Crystal Reactive Etching and Metallization Process (SCREAM) 34

    2.3.2 Sacrificial Bulk Micromachining (SBM) 38

    2.3.3 Silicon on Nothing (SON) 40

    References 45

    3 Enhanced Bulk Micromachining Based on MIS Process 49
    Xinxin Li and Heng Yang

    3.1 Repeating MIS Cycle for Multilayer 3D structures or Multi-sensor Integration 49

    3.1.1 Pressure Sensors with PS3 Structure 49

    3.1.2 P+G Integrated Sensors 52

    3.2 Pressure Sensor Fabrication – From MIS Updated to TUB 54

    3.3 Extension of MIS Process for Various Advanced MEMS Devices 58

    References 58

    4 Epitaxial Poly Si Surface Micromachining 61
    Masayoshi Esashi

    4.1 Process Condition of Epi-poly Si 61

    4.2 MEMS Devices Using Epi-poly Si 61

    References 67

    5 Poly-SiGe Surface Micromachining 69
    Carrie W. Low, Sergio F. Almeida, Emmanuel P. Quévy, and Roger T. Howe

    5.1 Introduction 69

    5.1.1 SiGe Applications in IC and MEMS 70

    5.1.2 Desired SiGe Properties for MEMS 70

    5.2 SiGe Deposition 70

    5.2.1 Deposition Methods 70

    5.2.2 Material Properties Comparison 71

    5.2.3 Cost Analysis 72

    5.3 LPCVD Polycrystalline SiGe 73

    5.3.1 Vertical Furnace 73

    5.3.2 Particle Control 75

    5.3.3 Process Monitoring and Maintenance 75

    5.3.4 In-line Metrology for Film Thickness and Ge Content 76

    5.3.5 Process Space Mapping 77

    5.4 CMEMS® Process 78

    5.4.1 CMOS Interface Challenges 79

    5.4.2 CMEMS Process Flow 80

    5.4.2.1 Top Metal Module 80

    5.4.2.2 Plug Module 84

    5.4.2.3 Structural SiGe Module 85

    5.4.2.4 Slit Module 85

    5.4.2.5 Structure Module 85

    5.4.2.6 Spacer Module 85

    5.4.2.7 Electrode Module 85

    5.4.2.8 Pad Module 86

    5.4.3 Release 86

    5.4.4 Al–Ge Bonding for Microcaps 87

    5.5 Poly-SiGe Applications 88

    5.5.1 Resonator for Electronic Timing 88

    5.5.2 Nano-electro-mechanical Switches 92

    References 94

    6 Metal Surface Micromachining 99
    Minoru Sasaki

    6.1 Background of Surface Micromachining 99

    6.2 Static Device 100

    6.3 Static Structure Fixed after the Single Movement 101

    6.4 Dynamic Device 103

    6.4.1 MEMS Switch 103

    6.4.2 Digital Micromirror Device 104

    6.5 Summary 111

    References 111

    7 Heterogeneously Integrated Aluminum Nitride MEMS Resonators and Filters 113
    Enes Calayir, Srinivas Merugu, Jaewung Lee, Navab Singh, and Gianluca Piazza

    7.1 Overview of Integrated Aluminum Nitride MEMS 113

    7.2 Heterogeneous Integration of Aluminum Nitride MEMS Resonators with CMOS Circuits 114

    7.2.1 Aluminum Nitride MEMS Process Flow 115

    7.2.2 Encapsulation of Aluminum Nitride MEMS Resonators and Filters 116

    7.2.3 Redistribution Layers on Top of Encapsulated Aluminum Nitride MEMS 118

    7.2.4 Selected Individual Resonator and Filter Frequency Responses 119

    7.2.5 Flip-chip Bonding of Aluminum Nitride MEMS with CMOS 121

    7.3 Heterogeneously Integrated Self-Healing Filters 123

    7.3.1 Application of Statistical Element Selection (SES) to AlN MEMS Filters with CMOS Circuits 123

    7.3.2 Measurement of 3D Hybrid Integrated Chip Stack 124

    References 127

    8 MEMS Using CMOS Wafer 131
    Weileun Fang, Sheng-Shian Li, Yi Chiu, and Ming-Huang Li

    8.1 Introduction: CMOS MEMS Architectures and Advantages 131

    8.2 Process Modules for CMOS MEMS 139

    8.2.1 Process Modules for Thin Films 140

    8.2.1.1 Metal Sacrificial 140

    8.2.1.2 Oxide Sacrificial 142

    8.2.1.3 TiN-composite (TiN-C) 143

    8.2.2 Process Modules for the Substrate 145

    8.2.2.1 SF6 and XeF2 (Dry Isotropic) 145

    8.2.2.2 KOH and TMAH (Wet Anisotropic) 146

    8.2.2.3 RIE and DRIE (Front-side RIE, Backside DRIE) 146

    8.3 The 2P4M CMOS Platform (0.35 μm) 148

    8.3.1 Accelerometer 148

    8.3.2 Pressure Sensor 149

    8.3.3 Resonators 150

    8.3.4 Others 152

    8.4 The 1P6M CMOS Platform (0.18 μm) 154

    8.4.1 Tactile Sensors 154

    8.4.2 IR Sensor 156

    8.4.3 Resonators 158

    8.4.4 Others 160

    8.5 CMOS MEMS with Add-on Materials 164

    8.5.1 Gas and Humidity Sensors 164

    8.5.1.1 Metal Oxide 164

    8.5.1.2 Polymer 170

    8.5.2 Biochemical Sensors 173

    8.5.3 Pressure and Acoustic Sensors 175

    8.5.3.1 Microfluidic Structures 178

    8.6 Monolithic Integration of Circuits and Sensors 180

    8.6.1 Multi-sensor Integration 180

    8.6.1.1 Gas Sensors 180

    8.6.1.2 Physical Sensors 181

    8.6.2 Readout Circuit Integration 183

    8.6.2.1 Resistive Sensors 183

    8.6.2.2 Capacitive Sensors 184

    8.6.2.3 Inductive Sensors 188

    8.6.2.4 Resonant Sensors 190

    8.7 Issues and Concerns 191

    8.7.1 Residual Stresses, CTE Mismatch, and Creep of Thin Films 192

    8.7.1.1 Initial Deformation – Residual Stress 192

    8.7.1.2 Thermal Deformation – Thermal Expansion Coefficient Mismatch 195

    8.7.1.3 Long-time Stability – Creep 197

    8.7.2 Quality Factor, Materials Loss, and Temperature Stability 199

    8.7.2.1 Anchor Loss 201

    8.7.2.2 Thermoelastic Damping (TED) 201

    8.7.2.3 Material and Interface Loss 201

    8.7.3 Dielectric Charging 203

    8.7.4 Nonlinearity and Phase Noise in Oscillators 204

    8.8 Concluding Remarks 205

    References 207

    9 Wafer Transfer 221
    Masayoshi Esashi

    9.1 Introduction 221

    9.2 Film Transfer 223

    9.3 Device Transfer (via-last) 228

    9.4 Device Transfer (Via-First) 231

    9.5 Chip Level Transfer 236

    References 241

    10 Piezoelectric MEMS 243
    T Takeshi Kobayashi (AIST)

    10.1 Introduction 243

    10.1.1 Fundamental 243

    10.1.2 PZT Thin Films Property as an Actuator 244

    10.1.3 PZT Thin Film Composition and Orientation 246

    10.2 PZT Thin Film Deposition 246

    10.2.1 Sputtering 246

    10.2.2 Sol–Gel 248

    10.2.2.1 Orientation Control 248

    10.2.2.2 Thick Film Deposition 249

    10.2.3 Electrode Materials and Lifetime of PZT Thin Films 250

    10.3 PZT–MEMS Fabrication Process 251

    10.3.1 Cantilever and Microscanner 251

    10.3.2 Poling 254

    References 255

    Part III Bonding, Sealing and Interconnection 257

    11 Anodic Bonding 259
    Masayoshi Esashi

    11.1 Principle 259

    11.2 Distortion 262

    11.3 Influence of Anodic Bonding to Circuits 263

    11.4 Anodic Bonding with Various Materials, Structures and Conditions 265

    11.4.1 Various Combinations 265

    11.4.2 Anodic Bonding with Intermediate Thin Films 269

    11.4.3 Variation of Anodic Bonding 271

    11.4.4 Glass Reflow Process 274

    References 276

    12 Direct Bonding 279
    Hideki Takagi

    12.1 Wafer Direct Bonding 279

    12.2 Hydrophilic Wafer Bonding 279

    12.3 Surface Activated Bonding at Room Temperature 283

    References 286

    13 Metal Bonding 289
    Joerg Froemel

    13.1 Solid Liquid Interdiffusion Bonding (SLID) 290

    13.1.1 Au/In and Cu/In 291

    13.1.2 Au/Ga and Cu/Ga 294

    13.1.3 Au/Sn and Cu/Sn 297

    13.1.4 Void Formation 297

    13.2 Metal Thermocompression Bonding 298

    13.2.1.1 Interface Formation 299

    13.2.1.2 Grain Reorientation 299

    13.2.1.3 Grain Growth 300

    13.3 Eutectic Bonding 301

    13.3.1 Au/Si 302

    13.3.2 Al/Ge 302

    13.3.3 Au/Sn 304

    References 304

    14 Reactive Bonding 309
    Klaus Vogel, Silvia Hertel, Christian Hofmann, Mathias Weiser, Maik Wiemer, Thomas Otto, and Harald Kuhn

    14.1 Motivation 309

    14.2 Fundamentals of Reactive Bonding 309

    14.3 Material Systems 311

    14.4 State of the Art 312

    14.5 Deposition Concepts of Reactive Material Systems 313

    14.5.1 Physical Vapor Deposition 313

    14.5.1.1 Conclusion Physical Vapor Deposition and Patterning 315

    14.5.2 Electrochemical Deposition of Reactive Material Systems 315

    14.5.2.1 Dual Bath Technology 316

    14.5.2.2 Single Bath Technology 318

    14.5.2.3 Conclusion DBT and SBT 319

    14.5.3 Vertical Reactive Material Systems With 1D Periodicity 319

    14.5.3.1 Dimensioning 320

    14.5.3.2 Fabrication 321

    14.5.3.3 Conclusion 323

    14.6 Bonding With RMS 323

    14.7 Conclusion 326

    References 326

    15 Polymer Bonding 331
    Xiaojing Wang and Frank Niklaus

    15.1 Introduction 331

    15.2 Materials for Polymer Wafer Bonding 332

    15.2.1 Polymer Adhesion Mechanisms 332

    15.2.2 Properties of Polymers for Wafer Bonding 335

    15.2.3 Polymers Used in Wafer Bonding 337

    15.3 Polymer Wafer Bonding Technology 341

    15.3.1 Process Parameters in Polymer Wafer Bonding 341

    15.3.2 Localized Polymer Wafer Bonding 348

    15.4 Precise Wafer-to-Wafer Alignment in Polymer Wafer Bonding 350

    15.5 Practical Examples of Polymer Wafer Bonding Processes 351

    15.6 Summary and Conclusions 354

    References 354

    16 Soldering by Local Heating 361
    Yu-Ting Cheng and Liwei Lin

    16.1 Soldering in MEMS Packaging 361

    16.2 Laser Soldering 362

    16.3 Resistive Heating and Soldering 365

    16.4 Inductive Heating and Soldering 368

    16.5 Other Localized Soldering Processes 370

    16.5.1 Self-propagative Reaction Heating 370

    16.5.2 Ultrasonic Frictional Heating 371

    References 374

    17 Packaging, Sealing, and Interconnection 377
    Masayoshi Esashi

    17.1 Wafer Level Packaging 377

    17.2 Sealing 378

    17.2.1 Reaction Sealing 378

    17.2.2 Deposition Sealing (Shell Packaging) 380

    17.2.3 Metal Compression Sealing 385

    17.3 Interconnection 388

    17.3.1 Vertical Feedthrough Interconnection 388

    17.3.1.1 Through Glass via (TGV) Interconnection 388

    17.3.1.2 Through Si via (TSiV) Interconnection 393

    17.3.2 Lateral Feedthrough Interconnection 395

    17.3.3 Interconnection by Electroplating 401

    References 404

    18 Vacuum Packaging 409
    Masayoshi Esashi

    18.1 Problems of Vacuum Packaging 409

    18.2 Vacuum Packaging by Anodic Bonding 409

    18.3 Packaging by Anodic Bonding with Controlled Cavity Pressure 414

    18.4 Vacuum Packaging by Metal Bonding 416

    18.5 Vacuum Packaging by Deposition 417

    18.6 Hermeticity Testing 417

    References 420

    19 Buried Channels in Monolithic Si 423
    Kazusuke Maenaka

    19.1 Buried Channel/Cavity in LSI and MEMS 423

    19.2 Monolithic SON Technology and Related Technologies 425

    19.3 Applications of SON 435

    References 439

    20 Through-substrate Vias 443
    Zhyao Wang

    20.1 Configurations of TSVs 444

    20.1.1 Solid TSVs 444

    20.1.2 Hollow TSVs 445

    20.1.3 Air-gap TSVs 445

    20.2 TSV Applications in MEMS 445

    20.2.1 Signal Conduction to the Wafer Backside 446

    20.2.2 CMOS-MEMS 3D Integration 446

    20.2.3 MEMS and CMOS 2.5D Integration 447

    20.2.4 Wafer-level Vacuum Packaging 448

    20.2.5 Other Applications 450

    20.3 Considerations for TSV in MEMS 450

    20.4 Fundamental TSV Fabrication Technologies 450

    20.4.1 Deep Hole Etching 451

    20.4.1.1 Deep Reactive Ion Etching 451

    20.4.1.2 Laser Ablation 452

    20.4.2 Insulator Formation 454

    20.4.2.1 Silicon Dioxide Insulators 454

    20.4.2.2 Polymer Insulators 455

    20.4.2.3 Air-gaps 455

    20.4.3 Conductor Formation 455

    20.4.3.1 Polysilicon 456

    20.4.3.2 Single Crystalline Silicon 456

    20.4.3.3 Tungsten 457

    20.4.3.4 Copper 457

    20.4.3.5 Other Conductor Materials 459

    20.5 Polysilicon TSVs 460

    20.5.1 Solid Polysilicon TSVs 460

    20.5.2 Air-gap Polysilicon TSVs 463

    20.6 Silicon TSVs 464

    20.6.1 Solid Silicon TSVs 465

    20.6.2 Air-gap Silicon TSVs 467

    20.7 Metal TSVs 469

    20.7.1 Solid Metal TSVs 470

    20.7.2 Hollow Metal TSVs 474

    20.7.3 Air-gap Metal TSVs 480

    References 481

    Index 493

    Masayoshi Esashi is senior research fellow in the Micro System Integration Center at Tohoku University and Professor emeritus. He obtained his doctorate from Tohoku University and his research focuses on MEMS, integrated sensors, and MEMS packaging. He has published over 500 scientific papers and was the recipient of the IEEE Jun-ichi Nishizawa Medal in 2016.

    Explore heterogeneous circuit integration and the packaging needed for practical applications of microsystems

    MEMS and system integration are important building blocks for the “More-Than-Moore” paradigm described in the International Technology Roadmap for Semiconductors. And, in 3D and Circuit Integration of MEMS, distinguished editor Dr. Masayoshi Esashi delivers a comprehensive and systematic exploration of the technologies for microsystem packaging and heterogeneous integration. The book focuses on the silicon MEMS that have been used extensively and the technologies surrounding system integration.

    You’ll learn about topics as varied as bulk micromachining, surface micromachining, CMOS-MEMS, wafer interconnection, wafer bonding, and sealing. Highly relevant for researchers involved in microsystem technologies, the book is also ideal for anyone working in the microsystems industry. It demonstrates the key technologies that will assist researchers and professionals deal with current and future application bottlenecks.

    Readers will also benefit from the inclusion of:

  • A thorough introduction to enhanced bulk micromachining on MIS process, including pressure sensor fabrication and the extension of MIS process for various advanced MEMS devices
  • An exploration of epitaxial poly Si surface micromachining, including process condition of epi-poly Si, and MEMS devices using epi-poly Si
  • Practical discussions of Poly SiGe surface micromachining, including SiGe deposition and LP CVD polycrystalline SiGe
  • A concise treatment of heterogeneously integrated aluminum nitride MEMS resonators and filters
  • Perfect for materials scientists, electronics engineers, and electrical and mechanical engineers, 3D and Circuit Integration of MEMS will also earn a place in the libraries of semiconductor physicists seeking a one-stop reference for circuit integration and the practical application of microsystems.


    PUBLISHER:

    Wiley

    ISBN-13:

    9783527346479

    BINDING:

    Hardback

    BISAC:

    Technology & Engineering

    LANGUAGE:

    English

    Request a Quote

    Interested in this product? Get a personalized quote.